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Topological characterization of normal modes in chains 
and rings 

David D. Keeports 

Department of Physical Sciences, Mills College, Oakland, California 94613, USA 

A method for predicting molecular stretching frequencies and normal coordin- 
ates for chain and ring pseudomolecules from topological considerations is 
presented. From previously published hydrocarbon force fields, complete G F  
product matrices for stretching are calculated for the chain and ring species. 
It is seen that with little loss of computational accuracy, these G F  products 
can be approximated as G F  = a E  +/3A, where A is a topological adjacency 
matrix. Consequently, semi-quantitative calculation of the stretching spectra 
of the pseudomolecules considered requires only a specification of bond 
connectivities. 

Key words: Graph theory--molecular topology--normal mode analysis-- 
H/ickel theory 

1. Introduction 

The construction of ~ system molecular orbitals reduces to a graph theoretical 
problem at the Hiickel level of approximation [1, 2]. According to the Hiickel 
method, electron interactions are neglected, and the secular equation 

I H , j - S v E I  =0  (1) 

is simplified by the substitutions 

H o = a if i = j  

Ho =/3 if i and j refer to adjacent atoms (2) 

H~j = 0 otherwise 

Sq = 1 if i = j  (3) 

So=0 if i ~ j .  
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According to the above simplifications eigenvalues and eigenvectors are found 
for a Hiickel matrix H given by 

H = o~E + flA (4) 

where E is an identity matrix and A is the topological adjacency matrix defined 
by 

Aij = 1 if i and j refer to adjacent atoms 

Aij = 0 otherwise. (5) 

If  o~ is taken as the origin of  the eigenvalue scale, then the treatment of a 
molecule's electron 7r system reduces to the diagonalization of the molecule's 
atomic adjacency matrix. Thus, according to Hiickel theory, a molecule's ~- system 
is characterized by the atomic connectivities within the molecule. It is the purpose 
of this paper to show that for the simple cases of  chain and ring pseudomolecules, 
vibrational normal modes are likewise topologically characterized. 

2. Method 

The standard Wilson GF-matrix method [3] for the determination of vibrational 
frequencies and normal eoordinates requires the calculation of the eigenvalues 
and eigenvectors of  the GF product matrix expressed in terms of suitable internal 
coordinates. In the equation 

GFL = LA, (6) 

A is a diagonal matrix whose diagonal entries are 

Ai = 47r 2 v~, (7) 

where vi is the frequency of the ith normal mode, and L is the matrix which 
transforms normal coordinates Q into internal coordinates R: 

L Q  = R. (8) 

A nontrivial solution to Eq. 6 exists only if 

] G F - A E [ - - 0  (9) 

where E is an identity matrix. Solution of Eq. 9 leads to the determination of Ai 
values. Relationships among entries of the ith column of L are found by substitu- 
tion~of & into the equation 

( G F -  A,E)[c,] = [0] (10) 

where [0] is a column matrix of zeros and [c~] is a column matrix of initially 
undetermined constant coefficients. 

According to Eq. 8, the coefficients which express the normal coordinates as 
linear combinations of  the internal coordinates are given by the rows of L -1. 

Q = L - 1 R .  (11) 
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Estimates of  dipole derivatives and thus of  infrared intensities can be made from 
calculated normal coordinates. While the desired L -~ matrix can be determined 
from L by the adjoint method or by elementary row operations, computational  
effort by the adjoint method or by elementary row operations, computat ional  
effort is saved if L -1 is calculated directly by substituting the hi values from Eq. 
9 into the equation 

[c~](GF - hiE) = [0] (12) 

where here [0] and [c~] are row matrices. Eq. 12 leads to relationships among the 
entries in the ith row of L -x. Alternately, in special cases where G F  is symmetric, 
L will be an orthogonal matrix whose inverse is simply its transpose. It is important  
to stress that while G and F are both symmetric matrices, the product  G F  is in 
general not symmetric. 

Topological treatment of  normal mode analysis requires the simplification of the 
G F  matrix for the species under consideration to the form of the H matrix in 
Eq. 4 with bond adjacency rather than atomic adjacency considered. The validity 
of  such a simplification can be evaluated by examination of the numbers occurring 
in the G F  matrix for the species. For this purpose, the Schachtschneider vibra- 
tional programs [4] have been modified to output the G F  matrix before its 
diagonalization. 

Two classes of  pseudomolecules,  including one-dimensional chains of  from three 
to seven atoms and rings of  from three to six atoms, were considered. Carbon 
masses and bond distances of  1.50 A were used in all cases. Only bond stretching 
force constants and stretch/stretch interaction constants between adjacent bonds 
were included in the calculations. Based upon published force constants for 
propane and cyclopropane [5], force constant values of  4.3 and 0.11 m dyn A-~ 
for linear cases and 4.8 and -0.13 m dyn A for ring cases were chosen. 

3. Results 

For all pseudomolecules under consideration, the individual G matrices and F 
matrices are of  the form of the H matrix of  Eq. 4, i.e. each is the sum of a 
diagonal matrix and a constant times an adjacency matrix. Most importantly for 
the purposes of  the present study, all G F  products are indeed of the form of H 
in Eq. 4 to a very good approximation.  

The complete G F  product  matrices for both the chains and rings considered 
here are in fact symmetric. In the case of  the linear pseudomolecules,  only four 
distinct nonzero numbers appear  in the G F  product. In each matrix for the linear 
cases, the first and last elements along the main diagonal are 0.708, while other 
diagonal elements are 0.698. Elements removed one column from the main 
diagonal are -0.340, and elements removed two columns from the main diagonal 
are -0.009. All other elements are zero. These numbers suggest that if G F  is 
called H, then exactly those simplifications given by Eq. 2 above (with i and j 
now referring to bonds) are appropriate with a = 0.70 and/3 = - 0 . 3 4 .  
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In the case of the ring pseudomolecules, only three distinct nonzero numbers 
appear in each of the complete GF matrices. Again, exactly those simplifications 
given by Eq. 2. can be made. Elements along the main diagonal range from 0.789 
for the three-membered ring to 0.811 for the six-membered ring. Thus, a substitu- 
tion of a = 0.80 along main diagonals is appropriate for all ring cases considered 
here. The small magnitudes of H~ values (-0.022 to 0.005) when i and j refer 
to atoms with one intervening atom suggest that these elements be set to zero. 
When i and j refer to adjacent atoms, all H o elements have a common value for 
a given ring. Thus, these elements can be replaced by a parameter ft. Unlike the 
linear pseudomolecule cases, however, different fl values are required for each 
of the ring cases. Appropriate fl values are 0.17, -0.02, -0.15, and -0.22, 
respectively, for rings of three, four, five, and six atoms. 

From the simplifications of Eq. 2, the vibrational secular equations for the linear 
pseudomolecules are identical in form to the Hiickel secular equations for the 
ethylene, allyl, butadiene, pentadienyl, and hexatriene ~- systems, while the 
vibrational secular equations for the ring pseudomolecules are identical in form 
to the Hiickel secular equations for the cyclopropenyl, cyclobutadiene, cyclopen- 
tadienyl, and benzene ~- systems. The reader is referred to standard textbook 
discussions [6, 7] of the solutions of the above Hiickel secular equations. 

Table 1. Eigenvalues and frequencies for linear pseudomolecules 

Eigenvalues Frequencies, cm -~ 
No. of atoms approx, exact approx, exact 

2 0.70 0.7167 1090 1103 

3 1.04 1.0475 1330 1334 
0.36 0.3675 780 790 

4 1.18 1.1792 1420 1415 
0.70 0.7167 1090 1103 
0.22 0.2175 610 608 

5 1.25 1.2428 1460 1453 
0.91 0.9233 1240 1252 
0.49 0.5030 910 924 
0.15 0.1425 500 492 

6 1.29 1.2781 1480 1473 
1.04 1.0475 1330 1334 
0.70 0.7167 1090 1103 
0.36 0.3675 780 790 
0.11 0.1003 430 413 

7 1.31 1.2996 1490 1486 
1.12 1.1264 1380 1383 
0.85 0.8662 1200 1213 
0.55 0.5635 970 978 
0.28 0.2784 690 688 
0.088 0.0742 390 355 
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Table 2. Eigenvalues and frequencies for ring pseudomolecules 
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Eigenvalues Frequencies, cm -~ 
No. of atoms approx, exact approx, exact 

3 1.14 1.1350 1390 1388 
0.63 0.6163 1030 1023 
0.63 0.6163 1030 1023 

0.84 0.8433 1190 1197 
0.80 0.8000 1170 1166 
0.80 0.8000 1170 1166 
0.76 0.7567 1140 1134 

1.04 1.0438 1330 1331 
1.04 1.0438 1330 1331 
0.71 0.7115 1100 1099 
0.71 0.7115 1100 1099 
0.50 0.5228 920 942 

1.24 1.2650 1450 1466 
1.02 1.0271 1320 1321 
1.02 1.0271 1320 1321 
0.58 0.5838 990 996 
0.58 0.5838 990 996 
0.36 0.3783 780 802 

4. Discuss ion 

Table  1 c o m p a r e s  exact  e igenvalues  and  f requencies  de t e rmine d  by  the 
Schach t schne ide r  p rog rams  for  the  l inear  p s e u d o m o l e c u l e s  to those  ca lcu la t ed  
f rom s impl i f ied  secu la r  equat ions .  A s imi lar  c ompa r i son  for  the  r ing 
p s e u d o m o l e c u l e s  is p r e sen t ed  in Table  2. Exce l len t  ag reement  is seen to exist  
be tween  exac t  and  a p p r o x i m a t e  so lu t ions  in bo th  cases. Thus,  the  GF produc t s  
for  these  species  can be  s impl i f ied  to the  fo rm 

G F =  ~E + /3A (13) 

wi th  l i t t le loss of  c o m p u t a t i o n a l  accuracy.  Consequen t ly ,  the  GF matr ix  reduces  
to a func t ion  o f  the  ad j acency  mat r ix  o f  the  species.  

In  summary ,  for  the  s imple  chain  and  r ing p s e u d o m o l e c u l e s  cons ide red  here,  
s t re tching n o r m a l  m o d e s  in terms o f  an e igenvalue  scale or igin ~ and  an ad j acency  
weight  p a r a m e t e r / 3  are  de t e rmined  by  speci f ica t ion  o f  b o n d  connect iv i t ies  wi thou t  
reference  to a pa r t i cu l a r  force field. Thus,  semi-quant i t a t ive  v ib ra t iona l  spec t ra  
for  the s t re tches  o f  these  species  can be de r ived  f rom pure ly  t opo log i ca l  cons ider -  
at ions.  
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